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Abstract. Several new algorithms for camera-based fall detection have
been proposed in the literature recently, with the aim to monitor older
people at home so nurses or family members can be warned in case of a
fall incident. However, these algorithms are evaluated almost exclusively
on data captured in controlled environments, under optimal conditions
(simple scenes, perfect illumination and setup of cameras), and with falls
simulated by actors.
In contrast, we collected a dataset based on real life data, recorded at the
place of residence of four older persons over several months. We showed
that this poses a significantly harder challenge than the datasets used
earlier. The image quality is typically low. Falls are rare and vary a lot
both in speed and nature. We investigated the variation in environment
parameters and context during the fall incidents. We found that various
complicating factors, such as moving furniture or the use of walking aids,
are very common yet almost unaddressed in the literature. Under such
circumstances and given the large variability of the data in combination
with the limited number of examples available to train the system, we
posit that simple yet robust methods incorporating, where available, do-
main knowledge (e.g. the fact that the background is static or that a
fall usually involves a downward motion) seem to be most promising.
Based on these observations, we propose a new fall detection system.
It is based on background subtraction and simple measures extracted
from the dominant foreground object such as aspect ratio, fall angle and
head speed. We discuss the results obtained, with special emphasis on
particular difficulties encountered under real world circumstances.
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1 Introduction

Many older persons fall and are not able to get up again unaided. Thirty to
forty-five percent of the persons aged 65 or older living at home and more than



half of the elders living in a nursing home fall at least once a year. One out of
three up to one out of two older persons fall more than once every year [14, 24].

Ten to fifteen percent of those who fall, suffer severe injuries. [14] The lack
of timely aid can lead to further complications such as dehydration, pressure
ulcers and even death. Although not all falls lead to physical injuries such as
hip fracture, psychological consequences are equally important, leading to fear
of falling, losing self-confidence and fear of losing independence [4, 14]. Taking
the ongoing aging of the population into account, it is obvious that adequately
detecting fall incidents is getting more and more important. Indeed, a large study
in the Netherlands reported an increase of fall-related hospital admissions from
1981 to 2008 by 137% [8]. Furthermore, falls are associated with substantial
costs. For instance, the excess costs associated with treating hip fractures range
between USD 11,241-18,727 in the first year following the fracture [7]. A study
in the U.K. estimated the total cost (year 1999) related to injurious falls in those
aged 75 and older to be almost 647 million [20].

The existing technological detectors are mostly based on wearable sensors.
However, a market study of SeniorWatch [21] discovered that the sensors are not
worn at all times (e.g. at night). Also, in case the device is button operated, as
with a Personal Alarm System, some persons with (mild) cognitive impairment
are not always able to activate the alarm system due to complexity of issues
around the use of call alarms [4]. As a result, many falls remain undetected.
A camera-based system, on the other hand, has the potential to overcome the
limitations mentioned above, because it is contactless and does not require ini-
tiative of the person. On the downside, one or more cameras need to be installed
in every room, increasing the cost of this system; the system is fixed; and only
works indoor. Another disadvantage is that it is not possible to take the system
along on a trip.

In the last decade, several research groups have focused on a camera based fall
detection algorithm. However a major drawback of these studies, is the fact that
they use simulated data. The falls have been recorded in artificial environments
and the simulators are mostly younger persons. The goal of our work is the
development and evaluation of a prototype camera based fall detection system
using real life data. For this, we have installed cameras monitoring four older
persons with an increased risk of falling at their place of residence for six months.
Three of these persons are residing in a nursing home, since people with a history
of falling are often institutionalized.

In the remainder of this paper, we first discuss how we captured our dataset
and the challenges posed by the usage of real world data (Section 2). Next, we
give an overview of earlier work (Section 3). In Section 4, we describe the fall
detection algorithm we developed, followed by some preliminary results of the
validation of our algorithm using the real life video data in Section 5. In Section
6 we discuss these results. Section 7 concludes the paper.



Fig. 1. Setup of cameras. Left panel: Room in nursing home. Right panel: Service flat

2 THE DATASET AND ITS CHALLENGES

2.1 Data collection

During the acquisition phase, we have installed four camera systems at the place
of residence of four older persons. one at the home of an independently living
older woman, one in a room of a nursing home and two in a service flat. Figure 1
shows how the cameras were installed in the nursing home. For privacy reasons,
we did not plan to install a camera in the bathroom. However, the person in
the nursing room asked us to install a camera there after falling twice at that
location. We also provided a control panel that allowed the participant to switch
off the system whenever wanted. However, only the cleaning personnel used this
option.

The participants’ age was in the range of 83 to 95 years old, and all of them
had an increased risk of falling. Recordings were made during approximately
six months, 7 days a week, and 24 hours a day. During these six months, we
recorded over 14.000 hours of video and captured 24 falls. Most falls occured in
two persons. The person living independently did not fall during our monitoring
period, while one of the participants in a service flat only fell once. To our
knowledge, this is a unique dataset. To capture these events, we received the
approval of the Medical Ethics Committee of the Leuven University Hospitals
and all participants gave their written informed consent.

For each residence we used 4 wall-mounted IP cameras. We used a combi-
nation of ACTI ACM-1511 and AXIS 207 cameras. The ACTI cameras already
had day/night vision. We changed the lenses of the AXIS cameras to one with a
view angle of 80 degrees without a near-infrared filter. Additional near-infrared
sources made it possible to record video in low-light conditions and during the



night. We recorded images with a resolution of 640 by 480 pixels using a frame
rate of 12 frames per second. Since we wanted to be able to analyze images in
low light conditions or during the night, we used gray level images. To be able
to store the data, we used M-JPEG compression. This reduced the disc space
usage to 1.8 GB per hour.

Not only did the collection of this dataset allow us to evaluate prototype
systems for camera based fall detection on real world data (see Section 5), it
also provided us with valuable insights on the typical challenges that can arise
when using real life data, both for fall and non-fall scenarios. While we cannot
make the dataset publicly available because of privacy issues, we can comment
on these general findings.

2.2 Data characteristics in a typical real life scenario

The analysis of the captured video shows some challenges that researchers de-
veloping fall detection systems should be aware of. Which ones are important
depends on the algorithms used.

Image quality First, the quality of the camera in a real world scenario is typically
lower than what is used in a lab setup. Indeed, from a practical point of view, to
be cost-efficient, it is not possible to install high quality cameras. Moreover, it is
necessary to monitor the person also in low-light conditions during the evening
or night. Therefore, we also needed to record near-infrared, which is often more
noisy. It is important to install as few cameras as possible. The usage of a camera
and lens with view angle close to 90 degrees installed in the corner in of the room
gives the best coverage. But the wide angle of the lens also decreases the spatial
resolution of the camera.

Color information In near-infrared night images, no color information is avail-
able. But even during daytime when color information is available, it is not very
reliable. Especially the different light sources in a house (sun light, fluorescent
light, light bulbs, tv-screen, etc.) present some specific challenges. For example,
during one of our preliminary tests, a person moved in front of a window, the
sunlight was partially blocked, which changed the color of the incident light. Sev-
eral methods for fall detection proposed in the literature [2] rely on color-based
shadow detection algorithms to improve the output of a background subtraction
algorithm. However, these are based on the assumption that when an area is
covered by a shadow, this results in a significant change in brightness only with-
out change in color information [6]. This assumption is not always met in real
world circumstances. Hence color can be an unreliable source of information.

Overexposure The range of light intensities that occur during the day, is exten-
sive. A good configuration of the camera is needed. Even then, the brightness of
the sun can cause overexposure in some areas of the image. Careful placement
of the cameras in the room can decrease the problem to some extent. Instead of
pointing the camera to the window, it is better to attach it above the window,



Fig. 2. Examples of video frames with different illumination. Upper left: Sunlight
causes overexposure at window. Upper right: Localized overexposure caused by halogen
lamps. Lower left: Same room with minor overexposure. Lower right: Frame recorded
at night using near infrared.

facing the room. However, since it is necessary to cover all areas of the room
with a limited number of cameras, pointing them towards the windows cannot
always be avoided. Also halogen lamps can cause overexposure, as well as spe-
cial lighting conditions. Figure 2 shows an example of the same room at different
moments with different kinds of illumination.

Image clutter Not only the change in illumination has to be taken into account,
but also the changes occurring in the room itself. Rooms are often small, both
in nursing homes as in private homes and older persons tend to collect a lot
of furniture, which can have a sentimental value. When moving to a smaller
residence, they want to take these along. As a consequence, rooms are often
highly cluttered. When moving around in the room, the person is quite often
partially occluded. Over longer time periods, furniture is also less static than
one might expect (see also Figure 2). Furniture that is shifted, should therefore
be dealt with appropriately by the system.

Walking aids Some older persons have difficulties walking unaided. Because of
this, they sometimes use a walking aid like e.g. a rollator or a walking frame. The
legs of the person and part of the lower body can be occluded by this. Moreover,
the walking aid is another dominant foreground object, sometimes moving along



with the person, sometimes put aside (see e.g. Figure 2 top left). Fall detection
algorithms that rely on the person being the only or largest foreground object
in the scene may not be able to cope with this situation.

Appearance changes The appearance of the person also changes over time, e.g.
while getting (un)dressed or changing clothes. Under such conditions, relying on
color or intensity distributions to track the person, may not be a good idea.

Other moving objects Other challenges are for example a television or a cupboard
with doors that can be opened. Also a door is difficult to take into account. It
is a large moving object, and what is behind the door can differ each time
(e.g. an entrance door in a nursing home). A person that is lying in bed, is
almost completely occluded by the sheets while sleeping. But getting out of bed,
the sheets are folded back, which again represents a large moving object. Some
methods based on motion history images (e.g. [19]) learn to ignore the motion
in these image areas. However, this means that falls occurring at these locations
are more likely to be ignored as well.

Motion patterns The behavior of an older person can differ significantly from
that of a younger person. Analyzing our data, we observed that some persons
stay seated in the same place for extended times during the complete day. The
manner in which older persons move can differ significantly from younger per-
sons, certainly with respect to the speed of movement, which can be extremely
slow in some cases. Also the typical gait is different, with shorter strides.

2.3 Analysis of the observed fall incidents

As mentioned before, we monitored four persons and collected 24 falls. One
person did not fall during the monitoring period, while a second person fell
only once. The other two persons fell 10 and 13 times, respectively. Because
the majority of the falls occurred in only two individuals, it is not possible to
generalize our findings. Nevertheless, the recorded falls already give us some
insight in the challenges their detection represents.

Use of walking aids Both persons with a high number of falls, often used a
rollator walker. Half of the falls (n=12) occurred while using a walking aid. When
the person was falling, the rollator was pushed forward, sometimes crossing a
huge part of the room, or turning over. All these cases may interfere with the
fall detection, either because the person is occluded behind it, or because it
corrupts the extracted features. Figure 3 shows some examples of interference
that a rollator walker can cause.

Initial pose Not all falls start from a standing pose. A fall can also start from
a crouching or a bend over position, while picking something up. This occurs in
five falls (21%). A fall can also happen in two steps. Sometimes the person was
able to grab hold of a door or chair, but after a short time, had to let go and



Fig. 3. Two fall incidents with interference of a rollator walker. Upper panels: a fall
where the rollator partially occludes the person. Lower panels: the rollator is pushed
and rolls away from the person.

fell to the ground. This happened in two falls (9%). Five falls (21%) happened
shortly after standing up or while preparing to sit down. This arises because an
older person sometimes doesn’t have enough strength in his/her legs to stand
up or sit down slowly.

Occlusions and appearance Occlusions are another important challenge. In eleven
falls (46%), the person was completely or partially occluded, either by the walk-
ing aid or by the furniture. In one case, the fall started in one room and ended in
an adjacent one. Even with multiple cameras in the room, it is often impossible
to get an unoccluded view of the person. In three falls (12%), the person was
undressing, which drastically changed the appearance of the person.

Other moving objects One of the most occurring challenges are other moving
objects in the scene. In 18 falls (75%), the furniture in the room was moved by
the fall. Certainly chairs and tables are shifted easily, but also small and even
larger cupboards can be moved during a fall. Moving doors are also common. In
one case, a painting on the wall was shifted. The consequence is that sometimes
the appearance of the room can change completely. We already mentioned that
in some cases, the room is really filled with different pieces of furniture. In such a
case, it is almost impossible to not hit something while falling down. Even when a



Fig. 4. Two fall incidents with moving furniture. Upper panels: The table and chairs
are moved and the upper body of the person is occluded. Lower panels: The table,
chairs and sofa are moved. The rollator is also fallen over and the person is almost
completely occluded.

room is only modestly furnished, a fall against furniture will occur in most cases.
Figure 4 shows some examples of this type of interference. Especially methods
assuming a static scene and relying on background subtraction are affected by
this. On the other hand, a sudden motion over a large part of the scene could
by itself be a cue for fall detection.

Unbalanced data The final challenge is the ratio of fall to non-fall data. We have
recorded a dataset that is really extensive. The persons that we monitored all
had a high risk of falling. The numerous falls of two of our participants show
this. But even in this case, the falls only represent a tiny portion of the available
data. The performance of a fall detector is not only determined by its ability to
detect a fall, but also by its ability to generate as few false alarms as possible.
To test this, it is important to not only use the falls, but also part of the realistic
non-fall data.

The usage of this real life data and the numerous challenges it represents,
greatly increases the complexity in building a working fall detection system.
In the following section we review the state-of-the-art, taking the challenges
mentioned above into account. Next, in Section 4, we explain our preliminary
fall detector in more detail.



3 RELATED WORK

Most systems described in the literature can be divided in two main approaches
to the problem: those that try to detect the action of falling directly (e.g. [1, 2,
5, 12, 13, 18, 19, 22, 23, 25]), and those that instead detect unusual events in gen-
eral (e.g. [15, 16, 19]). The latter rely on indirect evidence, such as prolonged
inactivity at unusual locations, to infer fall incidents. Since normal behavior in
terms of person appearance (actions or poses) is considered too broad and varied
to model, these systems typically focus on spatio-temporal trajectories instead.
By doing so, the problem of the large variability in appearance is circumvented.
Moreover, since it is only needed to learn what normal behavior looks like, the
unbalancedness of the data is not really an issue, nor is the variability in ap-
pearance of fall incidents. On the downside, what is normal behaviour in terms
of spatio-temporal trajectories is typically location and camera (viewpoint) spe-
cific. Therefore, these systems usually need to be retrained for each new camera
setup. Also, an unusual pattern does not imply the occurrence of a fall incident
(or another event that would require intervention, for that matter). If, for in-
stance, a person is ill, he/she may show various forms of unusual behaviour, such
as staying in bed longer than usual, or going to the bathroom in the middle of
the night. This may result in lots of false alarms.

Methods that more directly try to detect the dynamic event of falling, do not
suffer from the above mentioned limitations. In this category, we again distin-
guish between methods building on simple cues like motion detection, often com-
bined with domain knowledge (e.g. [1, 2, 13, 18, 19, 23]), and methods that build
on recent advances in generic person detection and action recognition (e.g. [22]).
While the latter may seem promising at first, the amount of training data seems
insufficient to learn a reliable model for falls, especially when taking the large
variability in appearance of the falls into account. Also the quality of the images
is a limiting factor. Figure 5 shows the output of a state-of-the-art person de-
tector / pose estimator [28] applied to some of our recordings. A tracker might
improve these results to some extent, but we doubt whether it will be accurate
enough to infer a fall from the change in pose. Finally, the needed computation
time of these methods often does not allow for real-time processing.

It is possible to use more complex methods, like action recognition and person
detection, but we believe the most promising approach at this moment to be a
combination of relatively simple, low-level cues with available domain knowledge.
Since we know the cameras are static, background subtraction can be applied
to find the moving foreground objects, including the person. Likewise, one can
build on domain knowledge to design simple yet robust fall features, such as the
aspect ratio [1, 2, 13, 27] or the speed of the head of a person [18, 12] (exploiting
the fact that the head remains mostly unoccluded). These can be combined in
a low dimensional representation and presented to a classifier, with limited risk
of overfitting. Background subtraction has been used by many systems (e.g. [1,
2, 5, 12, 13, 16, 23, 27]). However, in many cases, it is assumed that this results in
an accurate silhouette of the person, based on which the pose can be determined
(e.g. [1, 2, 5, 16]). This is usually not the case for our real life data. Due to the



Fig. 5. Examples of the output of a state-of-the-art person detector [28]. Upper left
panel: Successful detection of human pose. Upper right and lower panels: Failed to
detect pose of the person.(Green : head, yellow : torso, violet : left arm, light blue :
right arm, red : left leg, dark blue : right leg)

low image quality as well as problems with overexposure, occlusions or changing
illumination conditions, background subtraction (even after shadow removal)
only gives a rough idea of where the person might be. Also the fact that older
persons often stay seated at the same place over long periods of time does not
help in this respect.

In conclusion, methods exploiting relatively low-level cues (e.g. [10, 18, 19,
23]) seem most promising in a real life context. They are robust, fast to compute,
and relatively generic (no need for retraining or calibration for each new camera
setup). More complex schemes can then be added as further verification or to
corroborate the results, if applicable.

4 METHODS

Our fall detection algorithm consists of four main parts: video acquisition, person
detection, fall detection and alarm generation (see Figure 6). The video is first
converted to gray level images. This way there is no need to alter the processing
if we switch to near-infrared at night. The alarm generation is not implemented
at this stage. The next sections explain the person detection, features for fall
detection and fall detector in further detail.



Fig. 6. Overview of the system (ROI: region of interest detection; Different fall features:
Aspect Ratio (AR), Fall Angle (FA), Speed of center of gravity (CS), Head Speed (HS)

4.1 Person Detection

Foreground Detection We first needed to segment out the foreground. For this
we used a background subtraction technique based on an approximate median
filter [11]. The advantages of the approximate median filter are its low memory
consumption, fast computation and robustness. The drawbacks are its rather
slow update to large changes in illumination and the fact that, as any background
subtraction method using a dynamic background, the foreground is influencing
the background. This influence leads to the appearance of a ghost figure. When
a person is sitting on the couch for a longer period, the background is updated
to incorporate the person into the background. If he stands up, the region of the
couch that was occluded previously will also differ from the background and it
is detected as foreground. This can influence the extraction of the features to
detect a fall. Not updating the model within the detected ROI (see below) is not
a solution, since a background model that is not updated over a longer time is
also not representative anymore due to changes in lighting conditions.

Shadow Removal A shadow cast by a moving object is also detected as fore-
ground since it makes the covered pixels appear darker. This makes the detected
foreground region larger than it should be. To remove this shadow, we used the
property that a shadow only changes the intensity of the pixel while the tex-
ture of the covered region does not change [6]. As a result, the texture of the
shadow is correlated with the corresponding texture of the background image.
Jacques and Jung describe in [9] the usage of the cross correlation (CC) to see
how good the detected foreground pixels match the background pixels. In case
the cross correlation is higher than a certain threshold and the pixel is darker in
the current image, then the pixel is classified as shadow. Also other changes in il-
lumination can be eliminated using this technique when removing the constraint
that the pixel has to be darker in the current image. Jacques and Jung state that



Fig. 7. Extraction of fall features: purple: bounding box, white: bounding ellipse, green:
center of gravity, blue: head position (The black box is for privacy reasons)

a threshold for the cross correlation of 0.98 together with a 5 × 5 neighborhood
gives a good result. These values were also used in our experiments.

ROI Detection The next step in our algorithm was the determination of a
region of interest (ROI). We first used an erosion/dilation step on all foreground
pixels. Next, we applied a connected components analysis to determine the fore-
ground objects. The largest object in the foreground was selected and considered
to correspond to the person. As noted earlier, selecting the largest foreground
object is prone to errors, since furniture or walking aids may move as well.
A better choice is to rely on a tracker. However, this was left as future work.
To minimize noise and interference, the object had to be larger than a certain
threshold. In our case, a minimum of 17500 pixels gave the best performance.
From this object we started to extract the features to detect a fall.

4.2 Fall Detection Features

Using the person, we extracted four features to detect a fall, including: aspect
ratio (AR) [1, 2, 13, 27], fall angle (FA) [19, 27], center speed (CS) [19] and head
speed (HS) [5, 12] (see Figure 7). These features have been designed based on
domain knowledge, i.e. in such a way that they capture relevant information to
discriminate falls from other actions, while at the same time being robust to
inaccuracies in the person detection. These are also the most widely used in the
literature, as explained in Section 3.

Aspect ratio The aspect ratio is calculated as the ratio of the width of the
bounding box (BB) around the foreground object and its height. A low aspect
ratio represents an upright person, while a high aspect ratio might point to a
person lying down.



Fall Angle The angle of the person in the image can be defined as the angle
between the long axis of the bounding ellipse and the horizontal direction. A
person that is standing, has an angle close to 90 degrees. A small angle represents
a person lying down (if seen from a side-view). We defined the fall angle as the
change in angle over a fixed timespan (2 seconds in our experiments). A large
fall angle can indicate a fall.

Center speed and head speed A person, and certainly an older person,
typically moves with a low speed. In contrast, most of the falls have a portion
with high speed movement. Based on this observation, we used two fall features
related to speed, center speed and head speed. Center speed is the speed of
the center of gravity of the foreground object. This center of gravity has the
advantage that it is rather stable. Small changes in appearance of the person
give only small changes in the center of gravity. But an occlusion of the lower
body, which happens frequently, causes the center of gravity to move upwards.
The head, on the other hand, is visible in most non-fall actions. In [5] Foroughi
et al. define the head as the highest point of the object. Here we used the highest
end of the main axis of the bounding ellipse as head position. The speed itself
was then defined as the amount of pixels that the point had shifted between two
adjacent frames in the video divided by the time between these two frames.

4.3 Fall Detection with SVM

Given that the features defined in the previous section are based on domain
knowledge, each of them can be used as a basic fall detector simply by choosing
an appropriate threshold (as done e.g. in [27]). However, better results can be
obtained if they are merged, and a single classifier combining the different cues is
learned. In this section we propose a Support Vector Machine (SVM) [26] based
fall detector which classifies a time slot (by its features) either as a fall or as
another event.

As noted earlier, the classes are imbalanced (in most cases ”normal” behav-
ior is seen, falls are rare) and class distributions are overlapping (the limited
set of features being used might not clearly discriminate all ”normal” events
from falls). Without any precautions SVM prediction might result in a simple
majority vote ignoring the existence of falls. To address this problem the SVM
learning objective was modified such that different weights are applied to mis-
classifications depending on the class [17]. In the SVM learning objective errors
for the minority class were multiplied by w while majority errors were multiplied
by 1 − w. How we determined w, is explained later.

In order to validate the fall detector the available dataset was randomly
partitioned into a training set, containing 66% of the data, and an independent
test set with the remaining data. The training set was then used to estimate the
SVM model parameters and a set of hyper-parameters. The test set was only
used for evaluation.

The hyper-parameters used in this paper are (a) the weight w, (b) the regu-
larization parameter of the SVM and (c) the Radial Basis Function (RBF) kernel



bandwidth. These were selected using cross-validation and a grid search maxi-
mizing the Area Under the Curve (AUC) of a Receiver Operating Characteristic
(ROC) curve. The ROC curve was computed by varying the threshold on the dis-
tances of considered data examples to the separating hyperplane which is defined
by the SVM model. In order to reduce random effects induced by partitioning
the data averaged AUC scores were computed on different data partitionings.

Additionally, feature selection was performed by executing a greedy forward
search. Firstly, 4 univariate SVM models (each based on 1 different feature and
trained using the procedure explained above) were compared in terms of AUC.
Next, the best feature (corresponding to the best SVM model) was retained and
combined with each of the remaining features in a bivariate SVM model. The
best feature set was retained and the procedure was repeated to find the best
feature set with incremented cardinality. Note that features were standardized
to have zero mean and unit standard deviation.

5 RESULTS

As mentioned before, we acquired an extensive dataset. To validate the algo-
rithm, we used for each of the 24 falls, the camera on which the person is best
visible. From this video, we selected a fragment of 20 minutes with the fall oc-
curring in the last two minutes of the video. Our current system does not use
the post-fall information (i.e., the person lying on the floor). Each video was di-
vided in non-overlapping time slots of two minutes long. For each time slot, the
fall features were extracted and the maximum values during that time slot were
used for further analysis (max pooling). In total this resulted in 240 epochs, of
which 24 are labeled as a fall. In a real system, the choice of the cameras could be
dealt with using a voting mechanism. The extraction of the different fall features
was executed on a pc with an Intel Core2 Quad Core Q9650 CPU running at 3
GHz. The algorithm was implemented in C++ using OpenCV. We can run four
threads with different video, each processing around eight frames per second.

Given our four features, SVM models were estimated using the procedure
described in the previous section. Results were averaged over 10 different parti-
tionings of training and test set. 1 Table 1 lists the averaged AUC scores and the
corresponding standard deviations for SVM models based on different feature
sets. Figure 8 and Figure 9 respectively present the ROC and Precision Recall
curves of the four best performing SVM models (measured in terms of AUC).
It can be observed that the combination of aspect ratio and head speed is to be
preferred. Using this feature set SVM outputs an averaged operating point with
a recall of 0.9(±0.2) and a precision of 0.26(±0.07). Another observation is that
the fall angle performs significantly lower than the other features.

Considering Figure 9, we noticed that the precision quickly drops when in-
creasing the recall. This behavior can be explained by looking at Figure 10, that
represents the distribution of the data when considering features aspect ratio and

1 Note that for each feature set the same set of data partitionings was used.



Fig. 8. ROC Curve

Fig. 9. Precision Recall graph



Table 1. Fall detection results

Feature set AUC

{AR} 0.88(±0.06)
{FA} 0.53(±0.09)
{CS} 0.84(±0.05)
{HS} 0.87(±0.05)

{AR,HS} 0.91(±0.06)
{AR,HS, FA} 0.90(±0.05)
{AR,HS, FA,CS} 0.86(±0.06)

Fig. 10. Class distribution using normalized aspect ratio and head speed

head speed. Here we can see that there are quite a number of non-falls that are
close to the falls. Closer visual inspection revealed that 90% of these have 4 main
causes. In 25% of the cases 2 persons were present in the room. In 20% of the
cases another foreground object had almost the same size as the person. In both
cases, the system often switched to the other person or object, resulting in large
motions and changes in aspect ratio. In 25% of the cases, the person’s image was
split in 2 blobs which were almost the same size. Situations where such an event
occurs included: over-illumination, the person wearing a shirt that is similar to
the background or the person starting to be integrated in the background by
the background update. This often resulted in a deviating aspect ratio as well as
large motions as the system jumps back and forth between the different parts.
Finally, in 20% of the cases there was interference of a ghost figure or moved
furniture.



6 DISCUSSION

Comparing our results with those reported in the literature [13][18], we have a
similar or higher detection rate, but a higher false alarm rate. Two out of the
three undetected falls started and ended outside of the view of the camera. This
was e.g. the case when the older person was taking something out of the closet.
The door was occluding the person at the start of the fall. During the fall the
person was visible just for a very short time, before tumbling in the bathroom.
A better placing or additional cameras can solve this. The higher false alarm
rate can be explained by the challenging nature of our dataset, including various
sources of errors that were previously largely ignored. In real life, falls only occur
in rare cases. It is thus important to significantly decrease the number of false
alarms to an acceptable level to get a usable fall detection system.

Most of the false alarms can be solved by using more advanced techniques.
The largest improvement can be expected from the use of a tracker. This avoids
large motions and changes in appearance caused by jumping back and forth
between different foreground blobs of different (parts of) persons or other objects.
This is the first step that we will investigate further. Also a more advanced
foreground detection, that is robust to continuous changes in illumination, slow
movement of older persons, different types of light-sources and possible over-
illumination, can give a large improvement. Using a mixture of Gaussians to
model the background showed no improvement on first sight. A means to detect
a person in the foreground, like for example the person detector of Felzenszwalb
et al. [3] can also reduce erroneous foreground objects. This detector is only
trained for standing persons (both whole body and upper body), but it can still
help as a verification every now and then. Alternatively, an articulated pose
estimator such as [28] may be used as well. In Figure 5 it did not perform well.
However, given a good initialization based on foreground detection, it may be
useful.

Additional improvements may be possible by adding other fall features (e.g.
posture or other appearance-based approaches), integrating information of sev-
eral cameras or other sensors and especially by integrating the post-fall infor-
mation.

In our tests, we used the camera on which the person was best visible. In
a real system, this choice has to be made automatically. A voting mechanism,
that uses the information how certain the system is that a fall occurred, can be
implemented for this. This knowledge of the certainty of the fall can also be used
to determine the needed action.

To reduce the annoyance of the false alarms, it is also possible to use an
alarming chain. A possible fall could first be presented to the resident itself,
if he doesn’t react, a further escalation to different levels of caregivers can be
executed.



7 CONCLUSION

Fall detection is becoming more and more important to ease the fears of an older
person or someone with an increased fall risk. In this way these persons are able
to live longer independently in a more comfortable way. In this paper we have
given an overview of our ongoing research, which is unique in the way we use
real life data. We have shown that under real life conditions, various sources
of errors emerge such as other persons, moving furniture, walking aids, etc.
that significantly increase the number of false alarms, yet have previously been
largely ignored. Our preliminary fall detector shows a recall of 0.9(±0.2) and a
precision of 0.26(±0.07). This calls for further research into more discriminative
fall features, as well as better foreground detection algorithms, including tracking
and person detection.
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